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Introduction 

Computational Fluid Dynamics is an ever-changing and lively field. With the 
recent and continuous advancements in computing technology, engineers are able to 
test and analyze more complex and difficult problems. For this reason, it is important for 
students to understand the fundamental principles of this complex and unique field. 
 In this project we were tasked with solving the 2D Incompressible Navier-Stokes 
equations. This was achieved using an explicit, time marching, predictor corrector 
method paired with a computational mesh to solve the governing equations. The 
pressure, and velocities are stored on a staggered grid and are predicted, corrected and 
then updated for every time step. The code allows for the solving of a Lid Driven cavity 
flow problem. Written with the intention of allowing the user to change some 
parameters, the code allows for the selection of fluid density, dynamic viscosity, grid 
size, side length, simulation time, and lid velocity. Once the user runs the code, a 
pressure and velocity field will be displayed and updated every time step, this diagram 
will also be saved as a .avi movie file for later examination. 
 
 
Procedure 

There are several methods you can use to solve this problem; the following 
procedure is just one way to do so. The resulting code will be broken into 10 steps, with 
steps 3-9 being performed inside of the time loop. For a more detailed explanation of 
the various discretizations refer to Anderson’s “Computational Fluid Dynamics”. 

Step 1: Define constants, create mesh, define mesh sizes, pre-allocate, and 

create initial conditions. 

Step 2: Create Laplacian Matrix; this is done outside of the time loop near the 

beginning of the code. 

Step 3: Calculate the u and v momentum predictors 

Step 4: Calculate the right hand side of the Poisson equation using the previously 

calculated predictor velocities. 

Step 5: Find the pressure solution using matrix inversion of the Laplacian and 

right hand side matrix calculated in step 4. 



Step 6: Convert the pressure solution into the mesh. 

Step 7: Correct for the x & y velocities using the predictor velocities and the 

previously calculated pressure. 

Step 8: Set the boundary conditions. 

Step 9: Post processing setup, 

Step 10: Open, Write, and Close the video from post processing. 

 
 
Results 

As we can see in the figures below, the lid driven cavity simulation performed as 
expected. Shortly after the simulation was initialized a small vortex was created on top 
right wall. It is believed that this vortex is the result of the transfer of momentum from 
the top layer of moving fluid to the lower layers. As time goes on we see that the small 
vortex slowly grows into a large eddy located near the center of the cavity.  
 Overall the code performed well, however there are several limitations. For one 
the code has a rather high computation time. Converting the Laplacian operator into a 
sparse matrix could reduce computation time. Furthermore, the code is only useful for 
very specific problems; although more complex problems could be solved it would 
require large amounts of modifications to the boundary conditions in order to solve 
them. 
 
 
 
 
 
 
 
 
  



 
Appendix A:  Tables and Figures 
 

 
Figure 1.A: Velocity field near the beginning of the simulation 

 

  

Figure 2.A: Velocity field near the end of the simulation. 



  

  

Figure 3.A: Pressure and Velocity field near end of simulation. 

  

 
 

 
  



Appendix B: Entire Code Used for Solution 
 
%                              **** READ ME **** 
  
% This is a Compuational Fluid Dynamics Solver. 
% This code utilizes time marching central differenced Navier Stokes equations  
% combined with the pressure correnction method and a staggered grid to solve 
% a lid driven incompressible or compressible cavity flow problem. The solution will  
% output into a .avi formatted file. It is neccesary for the user to  
% define the fluid properties, such as Density, Kinematic Viscosity, 
% Number of grid divisions in both x & y, the desired time step,  
% the total simulation time and the side lengths. 
% All of the various parameters will effect the solution.  
  
  
clear; clc; 
  
% Constants 
  
nu=0.001; % Kinematic Viscosity of water @ 40C 
rho=1.225; % Density of water @ 40c 
  
% Define Specified Parameters 
  
nx=41; % Number of Grid points in x 
ny=41; % Number of Grid Points in y 
Lx=1; % Length in x Direction 
Ly=1; % Length in y Direction 
dt=0.001; % Time Step Size  
t_final=10; % Simulation Time (s) 
  
  
% Index extents 
imin=2;  
imax=imin+nx-1;  
jmin=2;  
jmax=jmin+ny-1; 
  
% Create mesh 



x(imin:imax+1)=linspace(0,Lx,nx+1); 
y(jmin:jmax+1)=linspace(0,Ly,ny+1); 
  
%Create Mesh Middle spaces 
xm(imin:imax)= 0.5*(x(imin:imax)... 
    +x(imin+1:imax+1));  
ym(jmin:jmax)=0.5*(y(jmin:jmax)... 
    +y(jmin+1:jmax+1)); 
  
% Create mesh sizes 
dx=x(imin+1)-x(imin);  
dy=y(jmin+1)-y(jmin);  
dxi=1/dx; 
dyi=1/dy; 
  
% Number of timesteps 
Nt=t_final/dt; 
  
% Preallocate 
p=zeros(imax,jmax); 
us=zeros(imax+1,jmax+1); 
vs=zeros(imax+1,jmax+1); 
R=zeros(imax,1); 
u=zeros(imax+1,jmax+1); 
v=zeros(imax+1,jmax+1); 
t=zeros(1,Nt); 
Z=peaks(nx); 
L=zeros(nx*ny,nx*ny); 
  
  
% Innitial conditions 
t(1)=0; % Innitial Time  
u_bot(1)=0; % Innitial Velocity for Bottom wall 
u_top(1)=2; % Innitial Velocity for Top Wall 
v_lef(1)=0; % Innitial Velocity for Left Wall 
v_rig(1)=0; % Innitial Velocity for right wall 
fr=1; % Frame Rate  
  
% Creat Laplacian operator for solving pressure Poisson equation 



for j=1:ny 
    for i=1:nx 
        L(i+(j-1)*nx, i+(j-1)*nx)=2*dxi^2+2*dyi^2; 
        for ii=i-1:2:i+1 
            if (ii>0 && ii<=nx) % Interior points 
                L(i+(j-1)*nx,ii+(j-1)*nx)=-dxi^2; 
            else                % Neuman conditions on boundary 
                L(i+(j-1)*nx,i +(j-1)*nx)= ... 
                    L(i+(j-1)*nx,i +(j-1)*nx)-dxi^2; 
            end 
        end 
        for jj=j-1:2:j+1 
            if (jj>0 && jj<=ny) % Interior points 
                L(i+(j-1)*nx,i+(jj-1)*nx)=-dyi^2; 
            else                % Neuman conditions on boundary 
                L(i+(j-1)*nx,i +(j-1)*nx)= ... 
                    L(i+(j-1)*nx,i +(j-1)*nx)-dyi^2; 
            end 
        end 
    end 
end 
  
L(1 ,:)=0; 
L(1 ,1)=1; 
  
% solver 
 while t <= t_final 
  
         % update time  
        t = t + dt; 
  
        u_top(1)=2; 
    % u Momentum Predictor 
    for j = jmin:jmax 
  
        for i = imin+1:imax 
  
            A = (nu*(u(i-1,j)-2*u(i,j)+u(i+1,j))*dxi^2 ... 
                +nu*(u(i,j-1)-2*u(i,j)+u(i,j+1))*dyi^2 ... 



                -u(i,j)*(u(i+1,j)-u(i-1,j))*0.5*dxi ... 
                -(0.25*(v(i-1,j)+v(i-1,j+1)+v(i,j)+v(i,j+1)))... 
                *(u(i,j+1)-u(i,j-1))*0.5*dyi); 
  
            us(i,j)=u(i,j)+dt*A; 
  
        end 
    end 
  
    % v Momentum predictor 
    for j = jmin+1:jmax 
  
        for i = imin:imax 
  
            B = (nu*(v(i-1,j)-2*v(i,j)+v(i+1,j))*dxi^2 ... 
                +nu*(v(i,j-1)-2*v(i,j)+v(i,j+1))*dyi^2 ... 
                -(0.25*(u(i,j-1)+u(i+1,j-1)+u(i,j)+u(i+1,j)))... 
                *(v(i+1,j)-v(i-1,j))*0.5*dxi... 
                -v(i,j)*(v(i,j+1)-v(i,j-1))*0.5*dyi); 
  
            vs(i,j)=v(i,j)+dt*B; 
        end 
    end 
  
    % Compute right-hand side (R) of the Pressure Poisson Equation using 
    % the predictor velocities (vs) & (us). 
  
    n=0; 
  
    for j=jmin:jmax 
        for i=imin:imax 
            n=n+1; 
            R(n)=-rho/dt* ... 
                ((us(i+1,j)-us(i,j))*dxi ... 
                +(vs(i,j+1)-vs(i,j))*dyi); 
        end 
    end 
  
    % Find pressure solution for matrix inversion, Using Laplacian 



    % Operator (L) and Right hand side of Pressure Poisson Equations (R) 
  
    pv=L\R; 
  
    n=0; 
  
    p=zeros(imax,jmax); 
  
    % Convert pressure into mesh  
  
    for j=jmin:jmax 
        for i=imin:imax 
            n=n+1; 
            p(i,j)=pv(n); 
        end 
    end 
  
    % Corrector of x^(n+1) & y^(n+1) velocity 
  
    for j=jmin:jmax 
        for i=imin+1:imax 
            u(i,j)=us(i,j)-dt/rho*(p(i,j)-p(i-1,j))*dxi; 
        end 
    end 
    for j=jmin+1:jmax 
        for i=imin:imax 
            v(i,j)=vs(i,j)-dt/rho*(p(i,j)-p(i,j-1))*dyi;  
        end 
    end 
  
    % Set Boundary Conditions 
    u(:,jmin-1)=u(:,jmin)-2*(u(:,jmin)-u_bot);  
    u(:,jmax+1)=u(:,jmax)-2*(u(:,jmax)-u_top);  
    v(imin-1,:)=v(imin,:)-2*(v(imin,:)-v_lef);  
    v(imax+1,:)=v(imax,:)-2*(v(imax,:)-v_rig); 
  
    % post-processing... can also include within each time-step 
  
    figure(1); clf(1); 



        title('Velocity & Pressure Field','fontsize',20); 
    xlim([0,Lx]); 
    ylim([0,Ly]); 
    hold on  
    %contourf(x(imin:imax),y(jmin:jmax),p(imin:imax,jmin:jmax)'); 
    quiver(x(imin:imax),y(jmin:jmax),... 
        u(imin:imax,jmin:jmax)',v(imin:imax,jmin:jmax)','filled'); 
    xmax=Lx-dx; 
    ymax=Ly-dy; 
    % Set Limits on X & Y Axis 
    xlim([0 xmax]); 
    ylim([0 ymax]); 
    % Remove Tick Marks on X & Y Axis 
    set(gca,'YTick',[]); 
    set(gca,'XTick',[]); 
    hold on  
    cb = colorbar; 
    cb.Label.String = 'Pressure (Pascals)'; 
    drawnow 
  
    % Update Frame Rate for Video 
    Y(fr) = getframe(gcf); 
    fr=fr+1; 
  
end 
  
video=VideoWriter('CFD_Lid_Driven.avi','Uncompressed AVI'); 
open(video); 
writeVideo(video,Y); 
close(video); 
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